Chemical & Materials Engineering

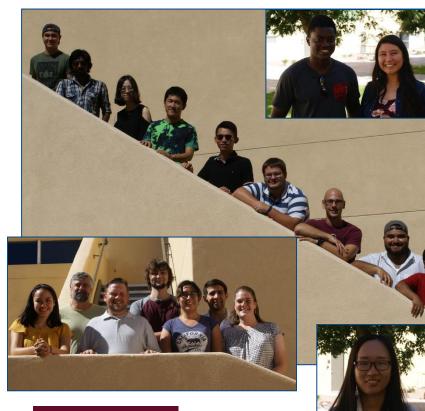
All About Discovery! ™ New Mexico State University nmsu.edu

Removal of N-Nitrosodimethylamine from Groundwater at the NASA White Sands Test Facility Daniel Ellis Undergraduate Researcher, Brewer Research Group

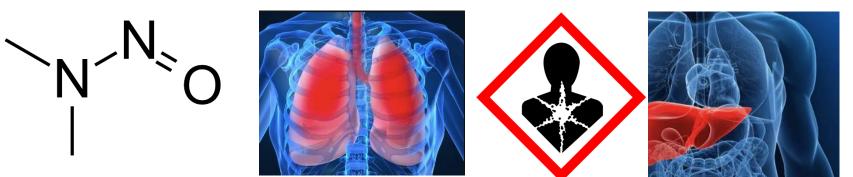
January 9, 2018

Acknowledgements

ReNUWIt


United States Department of Agriculture National Institute of Food and Agriculture

Acknowledgements



- NMSU Freeport McMoRan Water Lab, PES Analysis Lab, CURRL Microscopy Lab, EH&S
- NMSU Collaborators: Umakanta Jena, Omar Holguin, Nirmala Khandan, Wiebke Boeing, Wayne Van Voohries, Tanner Schaub, Juanita Miller, John Idowu, Paul Andersen, Mick O'Neill, Delia Valles-Rosales, April Ulery, Ram Acharya...

Project Background

- N-Nitrosodimethylamine (NDMA)
 - U.S. EPA contaminant watch list
 - Probable human carcinogen: 1 x 10⁻⁶ cancer risk for 0.7 ng/L in drinking water

Project Background

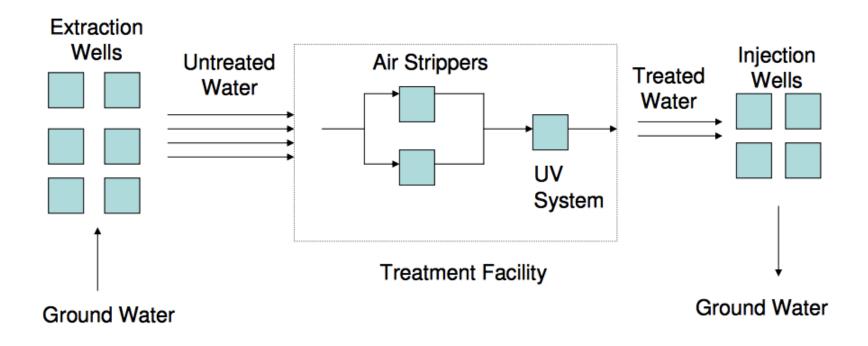
- NDMA Source at WSTF
 - Byproduct of treating Aerozine-50 rocket fuel produced during the Apollo Program

Project Background

- Other NDMA Sources
 - –Beer and smoked meat

-Water treatment systems that use chloroamines

Requirements for Removal


Treated water must have an NDMA concentration of less than 10 ng/L

-1 ng/L = 1 part per trillion (ppt)

- Ideally, concentrations should be below detectable limits using current analytical techniques (HRGC/HRMS)
 - -Less than 0.2 ppt

Current Removal System

Current Removal System

- UV photolysis
 - Band around 227 nm
 - Twelve 30-kW lamps (Hg vapor: 200-250 nm)
- Annual electrical cost
 - \$112,000 (UV/Ox tower)

nmsu.edu

\$560,000 (entire

Analytical Technique

- Southwest Research Institute (HRGC/HRMS)
 - -Sample size of 1 L
 - Turnaround time of approximately 2-3 weeks per sample
 - Typically able to make 4-5 samples per week including blanks

New Approach

- Replace the UV system with locallysourced activated carbons to remove NDMA
 - Pecan shells and pine bark
 - Waste from other industries as feedstock
 - -More cost effective

er environmental impact

Carbon Characterization

- Coconut shell
 - -Commercially available
 - -Common activated-carbon source
 - -Used to compare results from pecan shell and pine bark chars

Carbon Characterization

Pecan Shell and Pine Bark Chars

– Shells were pyrolyzed at varying temperatures from 400 to 900 °C

 Activation methods were by heat treatment (secondary pyrolysis from 400 to 900 °C) and K₂CO₃ (1:1:2 ratio by weight)

Different Analytical Approach

 H_3C

- Liquid Scintillation Counting (LSC)
 - -14C-labeled NDMA
 - Commercially available
 - -Detection limit of 5 ppt
 - -Relatively safe

Different Analytical Technique

- LSC
 - -Available on campus
 - -Smaller sample volumes (10 mL)
 - 4 replicates per sample
 - Turnaround time of approximately 1 day for analysis

Overall Process

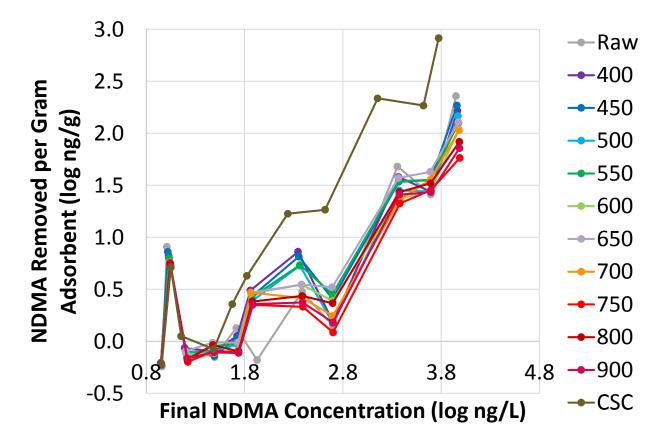
Sample Preparation

- Isotherm Definition
 - -Chars produced at one temperature and activation treatment
 - Different NDMA concentrations ranging from approximately 10 ppb to 1 ppt
 - -Compared against blanks (water purified at WSTF), standards, and coconut shell

char

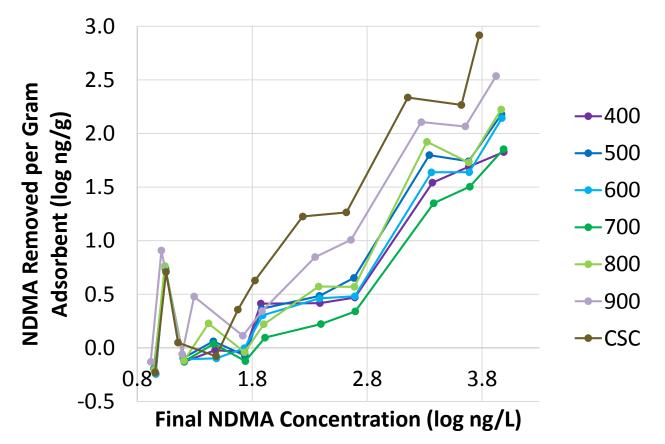
Sample Preparation

- NDMA Dilutions
 - Started from 1 mL at 30 mCi/mmol and 100 µCi/mL
 - Diluted to 100 mL for Mother Liquor
 - Individual concentrations diluted to 1 L
 - 19 samples 50 mL each
 - 4 replicates (10 mL each) for each sample
 - Scintillation cocktail at 1:1 ratio for LSC



Data Analysis

- Converted NDMA activity (nCi) to mass (ng)
- Each char sample 0.05 g per 50 mL sample
- Determined amount of NDMA removed on a mass of NDMA per mass of adsorbant



Results – Heat-Treated

Results – Activated

Conclusions

- Coconut shell had highest adsorption rates
- Best results come from chars produced at higher temperatures
- K₂CO₃-activated chars performed better than those with only heat treatment

Next Steps

- More isotherm data collection
 - -Ponderosa pine (in progress)
 - Douglas fir
- Higher temperature chars
 - -Pyrolysis at 1000 °C
 - –Heat-treated and K₂CO₃ activation

Next Steps

- Different activation methods
 - -Steam
 - -Sulfuric Acid
- Optimize activation
 - -Column studies
 - –Adsorption kinetics

Next Steps

- Design and Costing for WSTF
 - -Feedstock of raw materials
 - -Char production
 - -Treatment vessels

