Magnitude and Relevance of the February 2014 Radiation Release Event at WIPP

P. Thakur
Carlsbad Environmental Monitoring and Research Center
Carlsbad, NM 88220, USA
WIPP: A Working Repository

- 15 years of safe operations and permanent geological disposal of transuranic defense wastes [Intermediate-Level Long-Lived Waste by IAEA definition].

- Located in southeast New Mexico about 26 miles east of Carlsbad.

- TRU waste is man made radioactive elements that are heavier than uranium (Z>92).

- >100 nCi/g (>3700 Bq/g or ~1ppm) alpha emitting isotopes with t½ > 20 years.

- WIPP is also the first to recover from an accident and resume operations.
Quick Facts:
• Opened March 26, 1999
• 11,894 shipments received
• 90,983 cubic meters of waste disposed
• 171,064 containers disposed in the underground
CEMRC Role: Independent Environmental Monitoring

- Created in 1991 to conduct an independent environmental monitoring program of the WIPP
- Funded Primarily by the Department of Energy (DOE) through a grant (NOT a contract) that respects CEMRC independence
 - Current funding level $3m per year (~80% of total funding for CEMRC)
 - CEMRC monitoring and other work includes:
 - WIPP Underground Exhaust Air
 - Ambient Air
 - Drinking Water
 - Soil
 - Surface Water & Sediment
 - Whole Body Counting for Area Residents age 13+
 - R&D on monitoring methods and technologies

New Mexico State University
Recap of the Incidents at WIPP

February 5 Underground Fire

February 14, Radiation Release

LANL, 68660 Drum with a lifted lid
Filtration bypass allowed some (minor) external contamination

- Two leaking dampers allowed some contamination to bypass the filtration system
- Seal was imperfect due to salt buildup
- Foam was used to seal these dampers after the release
Consequence Assessment
WIPP Underground Air Sampling Stations (A and B)

Station A, before filtration

Station B, at post-filtration outlet
Radiation levels in the Underground Air (Station A)

- **Am-241**
 - 2014: ~4337 Bq/m³
 - 2015: ~0.002 Bq/m³
 - 2016: ~672 Bq/m³

- **Pu-239+240**
 - 2014: <0.0002 Bq/m³
 - 2015: <0.0002 Bq/m³
 - 2016: <0.0002 Bq/m³
Radiation levels in the Underground Air (Station B)

Am-241
- Concentration: 2.3 Bq/m³
- Approximate: ~ 2.5E-5 Bq/m³

Pu-239+240
- Concentration: ~ 0.22 Bq/m³
- Approximate: ~ 2.6E-6 Bq/m³
Historical Radiation levels in the WIPP Underground Air

- EPA limit ~7.4E-5 Bq/m³ is from 40CFR 61 and corresponds to 10 mrem/year
Estimating the total Environmental Release

• Station B (after filtration) results from both WIPP and CEMRC were used by each organization to estimate the total environmental release (~90% 241Am)

CEMRC analyses:
0.72 mCi of 241Am and
0.067 mCi of $^{239+240}$Pu
Total = (~1 mCi).

NWP analyses:
1.21 mCi of 241Am and
0.068 mCi of $^{239+240}$Pu
Total = (~1.3 mCi).
On site and Off Site Monitoring Stations

CEMRC Air sampling sites

- Onsite detection: 115 µBq/m³ of 241Am; 81.4 µBq/m³
- No off-site hi-volume sampler detections were positively attributable to the WIPP release event.
Plutonium Ambient Air Concentrations in the US
14-15 February 2015 release was modeled based on measured filter values and wind data in 15-minute increments

- Inhalation doses constructed as if all alpha was only 239Pu (conservative) and a hypothetical human breathed for entire duration of release.
- Inner darker green area >0.01 mSv
- Outer green area ranged from 0.01 to 0.001 mSv.
- Stars indicate sampling stations.
- Modeling of deposition in both green areas suggested none would be detectable on soil or vegetation (proven correct).
Workers Exposer- Radio-bioassay

- Between Feb-July, 2014, 144 WIPP workers and 42 local citizens were counted.
- 0.1 nCi MDA for 241Am
- 241Am not detected.

Fecal samples: 31
- 21 low-level positive
 - 21 positive for 241Am
 - 7 positive for Pu
- 0.024 Bq (1.45 dpm) was highest total activity in a sample

Urine samples: 140
- 1 low-level 241Am positive

Dose to the Contaminated workers
Ground Contamination in the WIPP Vicinity

Both predicted and measured values of ground contamination are below detectable levels.

Accumulated Deposition During First 12 hours

- All results to date were either below Minimum Detectable Concentrations (MDCs) or, for Pu, at levels seen prior to the event.
- Positive Pu detections did not have detectable Am, suggesting a non-WIPP event source, perhaps the nearby Gnome test’s atmospheric release (1961).
Underground Source Term Estimation

• The total radiological inventory in the drum was estimated to be around 9 Ci.

• It is estimated that between 5% and, at most, 20% of the drum inventory released into the WIPP underground.

• Source term estimation ~ 0.3-1.5 Ci of radioactivity released from the breached drum.

• The radiological constituents in the drum include: ^{241}Am, ^{243}Am, ^{237}Np, ^{238}Pu, ^{239}Pu, ^{240}Pu, ^{241}Pu, and ^{242}Pu (>95% of activity).

Data source: CEMRC, NWP and Hunter & Viner 2015
WIPP Underground – Contamination Status

A water spray is being used to remove and “fix” contamination from walls and ceilings.

When the salt recrystallizes, it encapsulates the contamination and prevents any resuspension of radioactive.

The highest concentration underground is 60 000 dpm (0.03 Ci) alpha while in most areas of the mine, contamination is minimal at less than 200 dpm per m².

- Gray = filled waste disposal rooms
- Orange = controlled area--clean
- Green = Radiological Buffer Area (radiation boundary) – clean
- Red = high contamination area
- Light blue = contamination area

Map courtesy: CBFO, DOE
WIPP Ventilation Issues

Total Airflow (cfm)

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard operations</td>
<td>425,000</td>
</tr>
<tr>
<td>WIPP Permit requirement</td>
<td>260,000</td>
</tr>
<tr>
<td>HEPA filtration</td>
<td>60,000</td>
</tr>
<tr>
<td>First phase: Interim skid-mounted ventilation</td>
<td>114,000</td>
</tr>
<tr>
<td>Second phase: Supplemental ventilation</td>
<td>180,000</td>
</tr>
<tr>
<td>Third phase: Permanent ventilation</td>
<td>500,000</td>
</tr>
</tbody>
</table>

New Mexico State University
Interim Ventilation System

- Interim Ventilation system is up and running since Aug, 25, 2016.
- It consists of two new fan (referred to as 960 fans)/filter units and ductwork.
- Provide adequate air flow at the waste phase – for resumption of waste placement.
- Increase airflow for ground control and maintenance operations.
- Ties into prior Ventilation System.

(target airflow ~118,000 cfm)
Supplemental Ventilation System

• Supplemental ventilation system not required for resumption of operations.

• Required for mining after waste operations resume.

• Scheduled to be operational in the early 2017.

(target airflow ~180,000 cfm)
Permanent Ventilation System

• New shaft and 55,000 sq. ft. ventilation building located east of the existing exhaust shaft

• Geotechnical Analysis is underway and consists of drilling multiple bore holes to various depths.

• Will provide sufficient airflow underground for mining and waste emplacement activities to occur concurrently.

• Operations in both “clean” and contaminated areas of the underground, targeting 500,000+ cfm airflow

• Provides operational flexibility

• Estimated to cost several hundred million dollars and will not be ready until 2021.
An alternative way to improve the Underground Ventilation is to:

Reverse the Policy of 100% Filtration of Underground Air
WIPP underground is a radiation-deprived environment

WIPP radiation levels average

- 0.031 μSv/h at the surface,
- 0.006 μSv/h 655m underground or 2.2 μSv/year

Derived Air Concentration (DAC) estimates from Station A readings

- DAC = concentration of radioactive material in air resulting in an annual intake limit if worker breathes that air 2,000 hours/year

- Small ~2% DAC peak at end of graph due to underground activity

- NWP=Nuclear Waste Partnership and independent monitoring organization (CEMRC) results shown

- Underground air relatively clean (but ALARA [=PPE] applied)

1 DAC ~ internal exposure of 50 mSV per work year, if a worker were continuously exposed for a full work year (2000 hours).

Graph courtesy: Roger Nelson
Increased Airflow could cause resuspension?

- No relationship between flows starting and stopping, and the airborne levels.
- The fluctuations are more likely due to varying activities in different areas underground.
- Levels remain well below any threshold that might require filtration.
Weighing Fears of Radiation

- WIPP radiation release Event (>0.01 mSv)
- Average annual US radiation dose (6.2 mSv)
- 1 average full-body CT scan (15 mSv)
- Maximum annual dose for US radiation workers (50 mSv)
- Lowest annual radiation dose linked to increased cancer risk (100 mSv)
- Maximum allowed radiation dose for emergency workers (250 mSv)
- 1600 m (~1 mile) from Hiroshima hypocenter (360 mSv)
- Average thyroid radiation dose observed in Chernobyl evacuees (490 mSv)

Radiation Poisoning > 5 Sv
Underground Radiation and Risk

• The primary risk from occupational radiation exposure is an increased risk of cancer.

• The amount of risk depends on the amount of radiation dose received, and the body parts exposed.

• Although scientists assume low-level radiation exposure increases one’s risk of cancer; medical studies have not demonstrated adverse health effects in individual exposed to small chronic radiation doses (up to 10 rem above background).

• If a person received a radiation dose of 10 rem to the entire body (above background), his or her chance of getting cancer would increase by 1%.
WIPP radiation Release Event in numbers

<table>
<thead>
<tr>
<th>Accident</th>
<th>Type</th>
<th>Release of Radioactive materials</th>
<th>Populations Evacuated</th>
<th>Off-site dose</th>
<th>Estimated clean-up costs in million US$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winscale 1957</td>
<td>Reactor fire</td>
<td>20,000 Ci, 131I 594 Ci 137Cs 0.02TBq Pu</td>
<td>No evacuation</td>
<td>10 time the Bkgd level</td>
<td>70,000 Complete by 2037</td>
</tr>
<tr>
<td>Three mile Island, 1979</td>
<td>Partial core melt</td>
<td>13-17 Ci 131I 34,000 Ci 85Kr</td>
<td>Voluntary short term evacuation of nearby communities due to misinformation.</td>
<td>0.08-1.0 mSv</td>
<td>~1000 12 years</td>
</tr>
<tr>
<td>Chernobyl, 1986</td>
<td>Runaway fission process destroying the reactor</td>
<td>1.4E+8 Ci</td>
<td>28, deaths, >300, 000 relocated</td>
<td>>20 mSv</td>
<td>250,000-500,000</td>
</tr>
<tr>
<td>Fukushima, 2011</td>
<td>Three reactor units severely damaged</td>
<td>1.2E+7 Ci</td>
<td>~160, 000 evacuated with prospects of return still unclear after 6 six years</td>
<td>~10 mSv</td>
<td>100,000-500,000</td>
</tr>
<tr>
<td>WIPP, 2014</td>
<td>Waste Drum breach</td>
<td>0.0013 Ci</td>
<td>No evacuation</td>
<td>1-10 µSv</td>
<td>500</td>
</tr>
</tbody>
</table>
Conclusions and Recommendations

• The WIPP radioactive release event was serious:
 • It stopped operations for almost three years
 • It cost up to a half billion dollars to recover the facility

• The WIPP radiation release event was minor:
 • In terms of exposures to workers (no doses assigned based on low and temporary bioassay results) and environmental contamination
 • There are no public health implications given such low off-site releases

• The WIPP Underground air is relatively clean:
 • The residual radioactivity levels in the underground no longer warrant HEPA filtration in order to meet either worker or environmental protection criteria
 • DOE should consider resumption of the unfiltered discharge of underground ventilation

• Independent voice and communication extremely important
 • With public and elected officials and also internally
 • Between site developer and regulator
 • Transparency; don't withhold information

• Be Prepared
 • Plan for a release, be able to measure it and mitigate it
 • Be able to tell public what the potential impact is—quickly and on a sustainable basis
CEMRC- Research is supported by the Waste Isolation Pilot Plant, Department of Energy, Carlsbad Field Office (CBFO) through a grant DE-FG29-91AL7416.

Special thanks to:
Radiochemistry group and
CEMRC employees